高速PCB設計指南(四)

admin @ 2014-03-26 , reply:0

概述
 第一篇 印製電路板的可靠性設計   目前電子器材用於各類電子設備和系統仍然以印製電路板為主要裝配方式。實踐證明,即使電路原理圖設計正確,印製電路板設計不當,也會對電子設……

 第一篇  印製電路板的可靠性設計
 
  目前電子器材用於各類電子設備和系統仍然以印製電路板為主要裝配方式。實踐證明,即使電路原理圖設計正確,印製電路板設計不當,也會對電子設備的可靠性產生不利影響。例如,如果印製板兩條細平行線靠得很近,則會形成信號波形的延遲,在傳輸線的終端形成反射雜訊。因此,在設計印製電路板的時候,應注意採用正確的方法。

一、 地線設計

在電子設備中,接地是控制干擾的重要方法。如能將接地和屏蔽正確結合起來使用,可解決大部分干擾問題。電子設備中地線結構大致有系統地、機殼地(屏蔽地)、數字地(邏輯地)和模擬地等。在地線設計中應注意以下幾點:

1. 正確選擇單點接地與多點接地

低頻電路中,信號的工作頻率小於1MHz,它的布線和器件間的電感影響較小,而接地電路形成的環流對干擾影響較大,因而應採用一點接地。當信號工作頻率大於10MHz時,地線阻抗變得很大,此時應盡量降低地線阻抗,應採用就近多點接地。當工作頻率在1~10MHz時,如果採用一點接地,其地線長度不應超過波長的1/20,否則應採用多點接地法。

2. 將數字電路與模擬電路分開

電路板上既有高速邏輯電路,又有線性電路,應使它們盡量分開,而兩者的地線不要相混,分別與電源端地線相連。要盡量加大線性電路的接地面積。

3. 盡量加粗接地線

若接地線很細,接地電位則隨電流的變化而變化,致使電子設備的定時信號電平不穩,抗雜訊性能變壞。因此應將接地線盡量加粗,使它能通過三位於印製電路板的允許電流。如有可能,接地線的寬度應大於3mm。

4. 將接地線構成閉環路

設計只由數字電路組成的印製電路板的地線系統時,將接地線做成閉環路可以明顯的提高抗雜訊能力。其原因在於:印製電路板上有很多集成電路元件,尤其遇有耗電多的元件時,因受接地線粗細的限制,會在地結上產生較大的電位差,引起抗雜訊能力下降,若將接地結構成環路,則會縮小電位差值,提高電子設備的抗雜訊能力。
 
二、電磁兼容性設計
  電磁兼容性是指電子設備在各種電磁環境中仍能夠協調、有效地進行工作的能力。電磁兼容性設計的目的是使電子設備既能抑制各種外來的干擾,使電子設備在特定的電磁環境中能夠正常工作,同時又能減少電子設備本身對其它電子設備的電磁干擾。

1. 選擇合理的導線寬度由於瞬變電流在印製線條上所產生的衝擊干擾主要是由印製導線的電感成分造成的,因此應盡量減小印製導線的電感量。印製導線的電感量與其長度成正比,與其寬度成反比,因而短而精的導線對抑制干擾是有利的。時鐘引線、行驅動器或匯流排驅動器的信號線常常載有大的瞬變電流,印製導線要儘可能地短。對於分立元件電路,印製導線寬度在1.5mm左右時,即可完全滿足要求;對於集成電路,印製導線寬度可在0.2~1.0mm之間選擇。

2. 採用正確的布線策略採用平等走線可以減少導線電感,但導線之間的互感和分佈電容增加,如果布局允許,最好採用井字形網狀布線結構,具體做法是印製板的一面橫向布線,另一面縱向布線,然後在交叉孔處用金屬化孔相連。為了抑制印製板導線之間的串擾,在設計布線時應盡量避免長距離的平等走線,儘可能拉開線與線之間的距離,信號線與地線及電源線儘可能不交叉。在一些對干擾十分敏感的信號線之間設置一根接地的印製線,可以有效地抑制串擾。

為了避免高頻信號通過印製導線時產生的電磁輻射,在印製電路板布線時,還應注意以下幾點:

●盡量減少印製導線的不連續性,例如導線寬度不要突變,導線的拐角應大於90度禁止環狀走線等。

●時鐘信號引線最容易產生電磁輻射干擾,走線時應與地線迴路相靠近,驅動器應緊挨著連接器。

●匯流排驅動器應緊挨其欲驅動的匯流排。對於那些離開印製電路板的引線,驅動器應緊緊挨著連接器。

●數據匯流排的布線應每兩根信號線之間夾一根信號地線。最好是緊緊挨著最不重要的地址引線放置地迴路,因為後者常載有高頻電流。

●在印製板布置高速、中速和低速邏輯電路時,應按照圖1的方式排列器件。

3.抑制反射干擾為了抑制出現在印製線條終端的反射干擾,除了特殊需要之外,應儘可能縮短印製線的長度和採用慢速電路。必要時可加終端匹配,即在傳輸線的末端對地和電源端各加接一個相同阻值的匹配電阻。根據經驗,對一般速度較快的TTL電路,其印製線條長於10cm以上時就應採用終端匹配措施。匹配電阻的阻值應根據集成電路的輸出驅動電流及吸收電流的最大值來決定。

三、去耦電容配置
  在直流電源迴路中,負載的變化會引起電源雜訊。例如在數字電路中,當電路從一個狀態轉換為另一種狀態時,就會在電源線上產生一個很大的尖峰電流,形成瞬變的雜訊電壓。配置去耦電容可以抑制因負載變化而產生的雜訊,是印製電路板的可靠性設計的一種常規做法,配置原則如下:

●電源輸入端跨接一個10~100uF的電解電容器,如果印製電路板的位置允許,採用100uF以上的電解電容器的抗干擾效果會更好。

●為每個集成電路晶元配置一個0.01uF的陶瓷電容器。如遇到印製電路板空間小而裝不下時,可每4~10個晶元配置一個1~10uF鉭電解電容器,這種器件的高頻阻抗特別小,在500kHz~20MHz範圍內阻抗小於1Ω,而且漏電流很小(0.5uA以下)。

●對於雜訊能力弱、關斷時電流變化大的器件和ROM、RAM等存儲型器件,應在晶元的電源線(Vcc)和地線(GND)間直接接入去耦電容。

●去耦電容的引線不能過長,特別是高頻旁路電容不能帶引線。
 
四、印製電路板的尺寸與器件的布置
  印製電路板大小要適中,過大時印製線條長,阻抗增加,不僅抗雜訊能力下降,成本也高;過小,則散熱不好,同時易受臨近線條幹擾。

在器件布置方面與其它邏輯電路一樣,應把相互有關的器件盡量放得靠近些,這樣可以獲得較好的抗雜訊效果。如圖2所示。時種發生器、晶振和CPU的時鐘輸入端都易產生雜訊,要相互靠近些。易產生雜訊的器件、小電流電路、大電流電路等應盡量遠離邏輯電路,如有可能,應另做電路板,這一點十分重要
 
五、熱設計
  從有利於散熱的角度出發,印製版最好是直立安裝,板與板之間的距離一般不應小於2cm,而且器件在印製版上的排列方式應遵循一定的規則:

·對於採用自由對流空氣冷卻的設備,最好是將集成電路(或其它器件)按縱長方式排列,如圖3示;對於採用強制空氣冷卻的設備,最好是將集成電路(或其它器件)按橫長方式排列,如圖4所示。

·同一塊印製板上的器件應儘可能按其發熱量大小及散熱程度分區排列,發熱量小或耐熱性差的器件(如小信號晶體管、小規模集成電路、電解電容等)放在冷卻氣流的最上流(入口處),發熱量大或耐熱性好的器件(如功率晶體管、大規模集成電路等)放在冷卻氣流最下游。

·在水平方向上,大功率器件盡量靠近印製板邊沿布置,以便縮短傳熱路徑;在垂直方向上,大功率器件盡量靠近印製板上方布置,以便減少這些器件工作時對其它器件溫度的影響。

·對溫度比較敏感的器件最好安置在溫度最低的區域(如設備的底部),千萬不要將它放在發熱器件的正上方,多個器件最好是在水平面上交錯布局。

·設備內印製板的散熱主要依靠空氣流動,所以在設計時要研究空氣流動路徑,合理配置器件或印製電路板。空氣流動時總是趨向於阻力小的地方流動,所以在印製電路板上配置器件時,要避免在某個區域留有較大的空域。整機中多塊印製電路板的配置也應注意同樣的問題。

大量實踐經驗表明,採用合理的器件排列方式,可以有效地降低印製電路的溫升,從而使器件及設備的故障率明顯下降。

以上所述只是印製電路板可靠性設計的一些通用原則,印製電路板可靠性與具體電路有著密切的關係,在設計中不還需根據具體電路進行相應處理,才能最大程度地保證印製電路板的可靠性。
 
六、產品騷擾的抑制方案
1   接地1.1 設備的信號接地

目的:為設備中的任何信號提供一個公共的參考電位。

方式:設備的信號接地系統可以是一塊金屬板。

1.2 基本的信號接地方式

有三種基本的信號接地方式:浮地、單點接地、多點接地。

1.2.1 浮地    目的:使電路或設備與公共地線可能引起環流的公共導線隔離起來,浮地還使不同電位的電路之間配合變得容易。    缺點:容易出現靜電積累引起強烈的靜電放電。    折衷方案:接入泄放電阻。

1.2.2 單點接地    方式:線路中只有一個物理點被定義為接地參考點,凡需要接地均接於此。    缺點:不適宜用於高頻場合。

1.2.3 多點接地    方式:凡需要接地的點都直接連到距它最近的接地平面上,以便使接地線長度為最短。    缺點:維護較麻煩。

1.2.4 混合接地    按需要選用單點及多點接地。

1.3 信號接地線的處理(搭接)

搭接是在兩個金屬點之間建立低阻抗的通路。

分直接搭接、間接搭接方式。

無論哪一種搭接方式,最重要的是強調搭接良好。

1.4 設備的接地(接大地)

設備與大地連在一起,以大地為參考點,目的:

1)  實現設備的安全接地

2)  泄放機箱上所積累的電荷,避免設備內部放電。

3)  接高設備工作的穩定性,避免設備對大地的電位在外界電磁環境作用下發生的變化。

1.5 拉大地的方法和接地電阻   接地棒。

1.6 電氣設備的接地

例2   屏蔽2.1 電場屏蔽2.1.1 電場屏蔽的機理    分佈電容間的耦合                           

處理方法:


1)  增大A、B距離。

2)  B盡量貼近接地板。

3)A、B間插入金屬屏蔽板。

2.1.2 電場屏蔽設計重點:

1)  屏蔽板程式控制受保護物;屏蔽板接地必須良好。

2)  注意屏蔽板的形狀。

3)  屏蔽板以良好導體為好,厚度無要求,強度要足夠。

2.2 磁場屏蔽

2.2.1 磁場屏蔽的機理

高導磁材料的低磁阻起磁分路作用,使屏蔽體內的磁場大大降低。

2.2.2 磁場屏蔽設計重點

1)  選用高導磁率材料。

2)  增加屏蔽體的壁厚。

3)  被屏蔽物不要緊靠屏蔽體。

4)  注意結構設計。

5)  對強用雙層磁屏蔽體。

2.3  電磁場屏蔽的機理

1)  表面的反射。

2)  屏蔽體內部的吸收。

2.3.2 材料對電磁屏蔽的效果

2.4 實際的電磁屏蔽體

七、產品內部的電磁兼容性設計

1 印刷電路板設計中的電磁兼容性

1.1 印刷線路板中的公共阻抗耦合問題      數字地與模擬地分開,地線加寬。

1.2 印刷線路板的布局

※對高速、中速和低速混用時,注意不同的布局區域。

※對低模擬電路和數字邏輯要分離。

1.3 印刷線路板的布線(單面或雙面板)

※專用零伏線,電源線的走線寬度≥1mm。

※電源線和地線儘可能靠近,整塊印刷板上的電源與地要呈“井”字形分佈,以便使分佈線電流達到均衡。

※要為模擬電路專門提供一根零伏線。

※為減少線間串擾,必要時可增加印刷線條間距離,在意安插一些零伏線作為線間隔離。

※印刷電路的插頭也要多安排一些零伏線作為線間隔離。

※特別注意電流流通中的導線環路尺寸。

※如有可能在控制線(於印刷板上)的入口處加接R-C去耦,以便消除傳輸中可能出現的干擾因素。

※印刷弧上的線寬不要突變,導線不要突然拐角(≥90度)。

1.4 對在印刷線路板上使用邏輯電路有益建議

※凡能不用高速邏輯電路的就不用。

※在電源與地之間加去耦電容。

※注意長線傳輸中的波形畸變。

※用R-S觸發的作按鈕與電子線路之間配合的緩衝。

1.4.1 邏輯電路工作時,所引入的電源線干擾及抑制方法

1.4.2 邏輯電路輸出波形傳輸中的畸變問題

1.4.3 按鈕操作與電子線路工作的配合問題

1.5 印刷線路板的互連      主要是線間串擾,影響因素:

※直角走線

※屏蔽線

※阻抗匹配

※長線驅動

2 開關電源設計中的電磁兼容性

2.1 開關電源對電網傳導的騷擾與抑制


騷擾來源:

①非線性流。

②初級電路中功率晶體管外殼與散熱器之間的容光煥發性耦合在電源輸入端產生的傳導共模雜訊。

抑制方法:

①對開關電壓波形進行“修整”。

②在晶體管與散熱器之間加裝帶屏蔽層的絕緣墊片。

③在市電輸入電路中加接電源濾波器。

2.2 開關電源的輻射騷擾與抑制


注意輻射騷擾與抑制

抑制方法:

①儘可能地減小環路面積。

②印刷線路板上正負載流導體的布局。

③在次線整流迴路中使用軟恢復二極體或在二極體上並聯聚酯薄膜電容器。

④對晶體管開關波形進行“修整”。

2.3 輸出雜訊的減小


原因是二極體反向電流陡變及迴路分佈電感。二極體結電容等形成高頻衰減振蕩,而濾波電容的等效串聯電感又削弱了濾波的作用,因此在輸出改波中出現尖峰干擾解決辦法是加小電感和高頻電容。

3 設備內部的布線


3.1 線間電磁耦合現象及抑制方法

對磁場耦合:

①減小干擾和敏感電路的環路面積最好辦法是使用雙絞線和屏蔽線。

②增大線間距離(使互感減小)。

③盡可有使干擾源線路與受感應線路呈直角布線。

對電容耦合:

①增大線間距離。

②屏蔽層接地。

③降低敏感線路的輸入阻抗。

④如有可能在敏感電路採用平衡線路作輸入,利用平衡線路固有的共模抑制能力克服干擾源對敏感線路的干擾。

3.2 一般的布線方法:


按功率分類,不同分類的導線應分別捆紮,分開敷設的線束間距離應為50~75mm。

4 屏蔽電纜的接地


4.1 常用的電纜

※雙絞線在低於100KHz下使用非常有效,高頻下因特性阻抗不均勻及由此造成的波形反射而受到限制。

※帶屏蔽的雙絞線,信號電流在兩根內導線上流動,雜訊電流在屏蔽層里流動,因此消除了公共阻抗的耦合,而任何干擾將同時感應到兩根導線上,使雜訊相消。

※非屏蔽雙絞線抵禦靜電耦合的能力差些。但對防止磁場感應仍有很好作用。非屏蔽雙絞線的屏蔽效果與單位長度的導線扭絞次數成正比。

※同軸電纜有較均勻的特性阻抗和較低的損耗,使從真流到甚高頻都有較好特性。

※無屏蔽的帶狀電纜。

最好的接線方式是信號與地線相間,稍次的方法是一根地、兩根信號再一根地依次類推,或專用一塊接地平板。

4.2 電纜線屏蔽層的接地


總之,將負載直接接地的方式是不合適的,這是因為兩端接地的屏蔽層為磁感應的地環路電流提供了分流,使得磁場屏蔽性能下降。

4.3 電纜線的端接方法


在要求高的場合要為內導體提供360°的完整包裹,並用同軸接頭來保證電場屏蔽的完整性。

5 對靜電的防護


靜電放電可通過直接傳導,電容耦合和電感耦合三種方式進入電子線路。

直接對電路的靜電放電經常會引起電路的損壞,對鄰近物體的放電通過電容或電感耦合,會影響到電路工作的穩定性。

防護方法:

①建立完善的屏蔽結構,帶有接地的金屬屏蔽殼體可將放電電流釋放到地。

②金屬外殼接地可限制外殼電位的升高,造成內部電路與外殼之間的放電。

③內部電路如果要與金屬外殼相連時,要用單點接地,防止放電電流流過內部電路。

④在電纜入口處增加保護器件。

⑤在印刷板入口處增加保護環(環與接地端相連)。

6 設備內部開關接點的處理


6.1 開關斷開過程中瞬變干擾形成

6.2 干擾的抑制措施

6.2.1 對被切換電感負載的處理

6.2.2 對開關觸點的處理

八、如何提高電子產品的抗干擾能力和電磁兼容性

在研製帶處理器的電子產品時,如何提高抗干擾能力和電磁兼容性?

1、下面的一些系統要特別注意抗電磁干擾:

(1)  微控制器時鐘頻率特別高,匯流排周期特別快的系統。

(2)  系統含有大功率,大電流驅動電路,如產生火花的繼電器,大電流開關等。

(3)  含微弱模擬信號電路以及高精度A/D變換電路的系統。

2、為增加系統的抗電磁干擾能力採取如下措施:

(1)  選用頻率低的微控制器:    選用外時鐘頻率低的微控制器可以有效降低雜訊和提高系統的抗干擾能力。同樣頻率的方波和正弦波,方波中的高頻成份比正弦波多得多。雖然方波的高頻成份的波的幅度,比基波小,但頻率越高越容易發射出成為雜訊源,微控制器產生的最有影響的高頻雜訊大約是時鐘頻率的3倍。

(2)  減小信號傳輸中的畸變:  微控制器主要採用高速CMOS技術製造。信號輸入端靜態輸入電流在1mA左右,輸入電容10PF左右,輸入阻抗相當高,高速CMOS電路的輸出端都有相當的帶載能力,即相當大的輸出值,將一個門的輸出端通過一段很長線引到輸入阻抗相當高的輸入端,反射問題就很嚴重,它會引起信號畸變,增加系統雜訊。當Tpd>Tr時,就成了一個傳輸線問題,必須考慮信號反射,阻抗匹配等問題。

信號在印製板上的延遲時間與引線的特性阻抗有關,即與印製線路板材料的介電常數有關。可以粗略地認為,信號在印製板引線的傳輸速度,約為光速的1/3到1/2之間。微控制器構成的系統中常用邏輯電話元件的Tr(標準延遲時間)為3到18ns之間。

在印製線路板上,信號通過一個7W的電阻和一段25cm長的引線,線上延遲時間大致在4~20ns之間。也就是說,信號在印刷線路上的引線越短越好,最長不宜超過25cm。而且過孔數目也應盡量少,最好不多於2個。

當信號的上升時間快於信號延遲時間,就要按照快電子學處理。此時要考慮傳輸線的阻抗匹配,對於一塊印刷線路板上的集成塊之間的信號傳輸,要避免出現Td>Trd的情況,印刷線路板越大系統的速度就越不能太快。  用以下結論歸納印刷線路板設計的一個規則:  信號在印刷板上傳輸,其延遲時間不應大於所用器件的標稱延遲時間。

(3)  減小信號線間的交叉干擾:    A點一個上升時間為Tr的階躍信號通過引線 AB傳向B端。信號在AB線上的延遲時間是Td。在D點,由於A點信號的向前傳輸,到達B點后的信號反射和AB線的延遲,Td時間以後會感應出一個寬度為 Tr的頁脈衝信號。在C點,由於AB上信號的傳輸與反射,會感應出一個寬度為信號在AB線上的延遲時間的兩倍,即2Td的正脈衝信號。這就是信號間的交叉干擾。干擾信號的強度與C點信號的di/at有關,與線間距離有關。當兩信號線不是很長時,AB上看到的實際是兩個脈衝的迭加。

CMOS工藝製造的微控制由輸入阻抗高,雜訊高,雜訊容限也很高,數字電路是迭加 100~200mv雜訊並不影響其工作。若圖中AB線是一模擬信號,這種干擾就變為不能容忍。如印刷線路板為四層板,其中有一層是大面積的地,或雙面板,信號線的反面是大面積的地時,這種信號間的交叉干擾就會變小。原因是,大面積的地減小了信號線的特性阻抗,信號在D端的反射大為減小。特性阻抗與信號線到地間的介質的介電常數的平方成反比,與介質厚度的自然對數成正比。若AB線為一模擬信號,要避免數字電路信號線CD對AB的干擾,AB線下方要有大面積的地,AB線到CD線的距離要大於AB線與地距離的2~3倍。可用局部屏蔽地,在有引結的一面引線左右兩側布以地線。

(4)  減小來自電源的雜訊:    電源在向系統提供能源的同時,也將其雜訊加到所供電的電源上。電路中微控制器的複位線,中斷線,以及其它一些控制線最容易受外界雜訊的干擾。電網上的強幹擾通過電源進入電路,即使電池供電的系統,電池本身也有高頻雜訊。模擬電路中的模擬信號更經受不住來自電源的干擾。

(5)  注意印刷線板與元器件的高頻特性:    在高頻情況下,印刷線路板上的引線,過孔,電阻、電容、接插件的分佈電感與電容等不可忽略。電容的分佈電感不可忽略,電感的分佈電容不可忽略。電阻產生對高頻信號的反射,引線的分佈電容會起作用,當長度大於雜訊頻率相應波長的1/20時,就產生天線效應,雜訊通過引線向外發射。  印刷線路板的過孔大約引起0.6pf的電容。  一個集成電路本身的封裝材料引入2~6pf電容。    一個線路板上的接插件,有520nH的分佈電感。一個雙列直扦的24引腳集成電路扦座,引入 4~18nH的分佈電感。    這些小的分佈參數對於這行較低頻率下的微控制器系統中是可以忽略不計的;而對於高速系統必須予以特別注意。

(6)  元件布置要合理分區:    元件在印刷線路板上排列的位置要充分考慮抗電磁干擾問題,原則之一是各部件之間的引線要盡量短。在布局上,要把模擬信號部分,高速數字電路部分,雜訊源部分(如繼電器,大電流開關等)這三部分合理地分開,使相互間的信號耦合為最小。G  處理好接地線  印刷電路板上,電源線和地線最重要。克服電磁干擾,最主要的手段就是接地。

對於雙面板,地線布置特別講究,通過採用單點接地法,電源和地是從電源的兩端接到印刷線路板上來的,電源一個接點,地一個接點。印刷線路板上,要有多個返回地線,這些都會聚到回電源的那個接點上,就是所謂單點接地。所謂模擬地、數字地、大功率器件地開分,是指布線分開,而最後都彙集到這個接地點上來。與印刷線路板以外的信號相連時,通常採用屏蔽電纜。對於高頻和數字信號,屏蔽電纜兩端都接地。低頻模擬信號用的屏蔽電纜,一端接地為好。

對雜訊和干擾非常敏感的電路或高頻雜訊特別嚴重的電路應該用金屬罩屏蔽起來。

(7)  用好去耦電容:    好的高頻去耦電容可以去除高到1GHZ的高頻成份。陶瓷片電容或多層陶瓷電容的高頻特性較好。設計印刷線路板時,每個集成電路的電源,地之間都要加一個去耦電容。去耦電容有兩個作用:一方面是本集成電路的蓄能電容,提供和吸收該集成電路開門關門瞬間的充放電能;另一方面旁路掉該器件的高頻雜訊。數字電路中典型的去耦電容為0.1uf的去耦電容有5nH分佈電感,它的并行共振頻率大約在7MHz左右,也就是說對於10MHz以下的雜訊有較好的去耦作用,對40MHz以上的雜訊幾乎不起作用。

1uf,10uf電容,并行共振頻率在20MHz以上,去除高頻率雜訊的效果要好一些。在電源進入印刷板的地方和一個1uf或10uf的去高頻電容往往是有利的,即使是用電池供電的系統也需要這種電容。    每10片左右的集成電路要加一片充放電電容,或稱為蓄放電容,電容大小可選10uf。最好不用電解電容,電解電容是兩層溥膜捲起來的,這種捲起來的結構在高頻時表現為電感,最好使用膽電容或聚碳酸醞電容。

去耦電容值的選取並不嚴格,可按C=1/f計算;即10MHz取0.1uf,對微控制器構成的系統,取0.1~0.01uf之間都可以。

3、降低雜訊與電磁干擾的一些經驗。

(1) 能用低速晶元就不用高速的,高速晶元用在關鍵地方。

(2) 可用串一個電阻的辦法,降低控制電路上下沿跳變速率。

(3) 盡量為繼電器等提供某種形式的阻尼。

(4) 使用滿足系統要求的最低頻率時鐘。

(5) 時鐘產生器盡量靠近到用該時鐘的器件。石英晶體振蕩器外殼要接地

(6) 用地線將時鐘區圈起來,時鐘線盡量短。


(7)I/O驅動電路盡量靠近印刷板邊,讓其儘快離開印刷板。對進入印製板的信號要加濾波,從高雜訊區來的信號也要加濾波,同時用串終端電阻的辦法,減小信號反射。

(8) MCD無用端要接高,或接地,或定義成輸出端,集成電路上該接電源地的端都要接,不要懸空。

(9) 閑置不用的門電路輸入端不要懸空,閑置不用的運放正輸入端接地,負輸入端接輸出端。

(10)印製板盡量使用45折線而不用90折線布線以減小高頻信號對外的發射與耦合。

(11)印製板按頻率和電流開關特性分區,雜訊元件與非雜訊元件要距離再遠一些。

(12)單面板和雙面板用單點接電源和單點接地、電源線、地線盡量粗,經濟是能承受的話用多層板以減小電源,地的容生電感。

(13)時鐘、匯流排、片選信號要遠離I/O線和接插件。

(14)模擬電壓輸入線、參考電壓端要盡量遠離數字電路信號線,特別是時鐘。

(15)對A/D類器件,數字部分與模擬部分寧可統一下也不要交叉。

(16)時鐘線垂直於I/O線比平行I/O線干擾小,時鐘元件引腳遠離I/O電纜。

(17)元件引腳盡量短,去耦電容引腳盡量短。

(18)關鍵的線要盡量粗,並在兩邊加上保護地。高速線要短要直。

(19)對雜訊敏感的線不要與大電流,高速開關線平行。

(20)石英晶體下面以及對雜訊敏感的器件下面不要走線。

(21)弱信號電路,低頻電路周圍不要形成電流環路。

(22)任何信號都不要形成環路,如不可避免,讓環路區盡量小。

(23)每個集成電路一個去耦電容。每個電解電容邊上都要加一個小的高頻旁路電容。

(24)用大容量的鉭電容或聚酷電容而不用電解電容作電路充放電儲能電容。使用管狀電容時,外殼要接地




[admin via 研發互助社區 ] 高速PCB設計指南(四)已經有3724次圍觀

http://cocdig.com/docs/show-post-44579.html